

EMI & Ionizing Radiation Effects on ICs: the Need for Combined Tests

FABIAN VARGAS

ELECTRICAL ENGINEERING DEPT. CATHOLIC UNIVERSITY – PUCRS PORTO ALEGRE, BRAZIL

VARGAS@COMPUTER.ORG

Motivation, Main Concerns

Aerospace Industry

In avionics, designs are moving from the Federated (distributed) to the Centralized IMA (Integrated Modular Avionics) Model -> multiple, mixed-critical functions (F-Control, F-Warning, Nav-System, Cabin Pressure, etc...) on a single chip!

This requires the use of **fast** (and **low power**) nano-ICs (< 100 nm) such as **processors** and **FPGAs**, which makes **EMI & radiation control** always **more challenging**.

However, it is a common practice ...

engineers qualify electronic systems to EMI, TID and SEU, or eventually to all of them, but often NOT taking into account the combined effects one phenomenon may take over the other.

E.g., assume that a given part of an embedded system for satellite application is certified by a set of EMI tests according to specific stds

After a given period of time operating on the field ...

Who can ensure that this part will still perform properly according to the same set of EMI stds, after a given level of TID radiation has been cumulated over time on the system, if the part was certified independently for EMI and radiation?

Also, who can ensure that the system will get approved for the same set of EMI stds, if operating in a harsh environment with dense flux of highenergy particles (SEEs)?

Goal

Having said this, we ...

 analyze the impact of combined tests for EMI + radiation (TID/SEU) on the reliability of electronic components

 propose a new methodology that takes this combination into account in order to qualify state-of-the-art components

Outline

1. Understanding the effects of EMI and ionizing radiation (TID, SEE) on embedded electronics

2. Review of existing mitigation techniques

- 3. Combined Test Planning
- 4. Configurable Platform for combined test
- 5. Experiments dealing to demonstrate the importance of combining these two test types for a safe system operation during whole lifetime

Understanding the effects of EMI on electronics

Understanding the Effects of EMI on Electronics

The increasing hostility of the electromagnetic environment caused by the widespread adoption of electronics, (mainly wireless technologies), represents a huge challenge for the reliability of RT embedded systems.

Electromagnetic Interference (EMI) Power Supply Disturbances (PSD) Transient Faults

Signals outside noise margins can be erroneously interpreted and stored by memory elements at the end of critical paths

Understanding the Effects of EMI on Electronics

The diagram below illustrates how radio transmitters can interfere with electronic systems and how electronic systems can interfere with radio reception

Understanding the Effects of EMI on Electronics

For interference to occur, we need several coincidences:

- there must exist a source of interference;
- there must exist a victim of that interference;
- there must exist a coupling path between them;
- the source must be emitting on a frequency at which the victim is susceptible;
 - the source must be emitting at a time when the victim is operating;
 - the interference must be at a significant level.

But in some occasions, when it happens ...

vargas@

Understanding the Effects of EMI on Electronics Supply (V) 5.0 3.3 I/O supply Core supply 2.5 1.8 1.0 **Minimum imunity** 0.5µ 0.35µ 0.18µ 90nm 65nm 45nm 32nm level Technology generation Inmunidad de un equipo Continuous reduction of voltage supply reduces noise margins and thus, increases susceptibility Field (v/m) Límite EMS MARGEN de EMC Limite EMI Emisiones de un equipo Maximun emission level Frequency (MHz)

Understanding the Effects of EMI on Electronics

				Muy b	uena antena	
	$\lambda = C / f$				tena eficiente	
	Frecuencia de la señal	Longitud de onda	$\frac{\lambda}{4}$	$\frac{\lambda}{20}$		
	50 Hz 3 kHz	5.000 km	1000 km	200 km	redes de distribución eléctrica, telefonía	
	30 kHz 300 kHz	10 km 1 km	2,5 km 250 m	500m 50m	instalaciones de control redes informáticas	
	3 MHz 30 MHz	100 m 10 m	25 m 2,5 m	5m 50 cm	cables externos equipos	
-	300 MHz 3 GHz 30 GHz	1 m 10 cm	25 cm 2,5 cm 25 mm	5 cm 50 mm	cables internos circuitos impresos	IC input pins
	300 GHz	10 mm	2,5 mm	0,5 mm	componentes	

IEC 61.000-4-17: Electromagnetic compatibility (EMC) – Part 4-17: Testing and measurement techniques – **Ripple on d.c. input power port immunity test**.

Test Levels and Waveform:

- The preferred range of the test levels, applicable to the d.c. power supply port of the product, are:

Level	Percentage of the nominal d.c. voltage
1	2
2	5
3	10
4	15
×	×

- The waveform of the ripple voltage, at the output of the test generator, has a **sinusoid-linear character**.

IEC 61.000-4-17: Electromagnetic compatibility (EMC) – Part 4-17: Testing and measurement techniques – **Ripple on d.c. input power port immunity test**.

IEC 61.000-4-17: Electromagnetic compatibility (EMC) – Part 4-17: Testing and measurement techniques – **Ripple on d.c. input power port immunity test**.

Information on the generator:

The generation of the ripple voltage can be achieved in different ways: with an a.c. voltage regulator (i.e., a rectifier system with smoothing capacitor and a discharging resistor).

IEC 61.000-4-29: Electromagnetic compatibility (EMC) – Part 4-29: Testing and measurement techniques – Voltage dips, short interruptions and voltage variations on d.c. input power port immunity tests.

IEC 61.000-4-29: Electromagnetic compatibility (EMC) – Part 4-29: Testing and measurement techniques – Voltage dips, short interruptions and voltage variations on d.c. input power port immunity tests.

Information on the generator:

Example of test generator based on two power sources with internal switching

Part 2: (G-) TEM Cell Method

G-TEM Cell Test Setup

Part 2: (G-) TEM Cell Method

22

Part 3: Bulk Current Injection (BCI) Method

BCI, Hardware Test Setup

Part 3: Bulk Current Injection (BCI) Method

Constant Waveform (CW) or Amplitude Modulated (AM) Waveform

Test severity level	Current (CW value) No insertion loss
1	50mA
	100mA
111	200mA
IV	300mA
v	specific value agreed between the users of this standard

Test Severity Levels

25

Existing Techniques to Protect Against EMI...

Block diagram of the synchronous DLX processor

5-Stage pipeline (Inspired on MIPS and ARM processors)

Existing Techniques to Protect Against EMI...

Desynchronization Approach: (a) Synchronous circuit; (b) Desynchronized version

Block diagram of the **asynchronous** ASPIDA DLX processor

Area overhead: 81%

Existing Techniques to Protect Against EMI	
For this processor, we analyzed	
the robustness of synchronous and asynchronous versions when exposed to EMI	
the EM emission levels between the two design paradigms	
vargas@computer.org	29

P

Existing Techniques to Protect Against EMI...

S SC

Existing Techniques to Protect Against EMI...

Test Environment

Immunity Test

Emission Test (Near-Field Test)

Understanding the effects of radiation: TID, SEE (SEU, SET) on electronics

Understanding the Effects of Radiation (TID) on Electronics

For critical applications (military, aerospace or biomedical) reliability assurance to total ionizing dose (<u>TID</u>) radiation is always at a premium being a key-issue for the success of such products in the market.

positive charge trapped in insulating layers

For CMOS ICs, the main TID effect is the increase of leakage currents and change in V_{th} of the devices

For high doses, a permanent functional failure of the circuit is observed.

vargas@computer.org

Understanding the Effects of Radiation (SEE) on Electronics

Fig. 1. Illustration of the charge collection mechanism that cause single-event upset: (a) particle strike and charge generation; (b) current pulse shape generated in the n+p junction during the collection of the charge.

Understanding the Effects of Radiation (SEE) on Electronics

Radiation (<u>SET</u>) effects on CMOS ICs are mainly caused by high-energy particles striking logic along with critical paths

For CMOS ICs, the main <u>SET</u> effect is the loss of information stored in memory elements (FFs, RAMs)

↓

Transient functional failure

of the circuit is observed

vargas@computer.org

Existing Techniques to Protect Against Radiation

For TID:

- use of rad-hard fabrication process (expensive solution): SOI, bulk-epi layer, ...

- use of guardbands: slow down clock frenquency, put extra timing margins

- use of **TID-tolerant std cells library** (build-up pMOS devices much larger than nMOS devices, replace NOR gates by Nand ones, etc)

Existing Techniques to Protect Against Radiation

For SEU:

- use of SEU-tolerant std cells library

- use of **EDACs** (Hamming code) in memory, parity in busses, TMR (with approximate computing), Checksum, CRC, ...

- use of Build-In Current Sensors (BICSs)

Combined Test Planning

Configurable Platform for Combined Test of Radiation, EMI and Aging

Goal

In this context...

We have been developing a configurable platform suitable for combined tests of EMI, radiation and aging measurements of prototype embedded systems

The platform can be used to perform measurements on ICs and embedded systems having in mind EMI and radiation international stds:

- IEC 62.132-2 (for radiated EMI noise)

- IEC 61.0004-17 and IEC 61.0004-29 (for conducted EMI noise)

- MIL-STD-883H / 1019.4 & 1032.1 methods (for TID & SEU Test Procedures)

and

47

С

1st

Test board designed for IEC 62.132-2 and 61.004-29 electromagnetic susceptibility analysis

C R

Mounting the FPGA on boards for EMI,TID, Burn-in immunity tests **8-layer Motherboard for Combined EMI x Radiation tests**

Top (test side)

Bottom (glue logic)

6-layer Daughterboards for Combined EMI x Radiation tests

Programming interface of the platform: screenshot of the configuration environment to perform tests according to the IEC stds 61.000-4-17 and 61.000-4-29

Brazilian Space Program

- Star Tracker (Navigation System)
- Onboard Telecommunication System

Final system integration

Platform was re-designed to qualify defense-grade and COTS components to replace space-grade ones in satelite apps:

components to replace space-grade ones in satence a

- ACTEL MICROSEMI:

Family: **ProASIC3**, Tech: **Flash**, 250nm Family: **RTAX**, Tech: **Antifuse**, 250 nm

- AEROFLEX COBHAM:

Family: Eclipse, Tech: Antifuse, 250 nm

- XILINX: Family: Virtex5, Tech: SRAM, 65nm

Experiments Based on the Platform

Combined Tests: Conducted EMI with TID

IP Core: RTOS-Guardian (RTOS-G), a watchdog to monitor RTOS activity in embedded systems

Some kind of "Passive" Task Scheduler in HW

vargas@computer.org

Block diagram of the target embedded system

Results for Fault Detection

As long as more complex services of the kernel are used, the higher is the RTOS error detection.

The native fault detection mechanism (assert() function) is called by the kernel every time RTOS runs its services (message queues, semaphores).

Benchmark	RTOS Kernel [%]	RTOS-G [%]
BMI	2.40	99.90
BM2	25.90	100.00
BM3	45.80	100.00
Average	24.70	99.97

Experiment	FPGA0 (krads)	FPGA1 (krads)	FPGA2 (krads)	FPGA3 (krads)	FPGA4 (krads)
1st experiment, December/2010	0	5.6	51.9	111.0	216.0
2nd experiment, March/2011	0	217.6	263.9	323.0	

Combined Tests: Radiated EMI with TID

Combined tests:

TID (Co⁶⁰) and Radiated-EM Immunity

1st Part*: 4 fresh FPGAs Virtex4 (XC4VFX12-10SF363) were characterized to radiated EM Immunity.

* based on IEC 61.132-2 Std (TEM Cell Method, anechoic chamber).

Test method conditions:

- EM field range: from 10 to 120 v/m (volts/meter);
- Radiated signal frequency range: [150kHz 1GHz];
- Signal modulation: AM Carrier 80% modulation at 1kHz, Horizontal Polarization.

2nd Part**: aging by TID exposition:

- Fab. Lot 1: 2 FPGAs received a total dose of 160 krads
- Fab. Lot 2: 2 FPGAs received a total dose of 336 krads

* based to **MIL-883H Std** (1019.8 Method for TID radiation testing), room temperature, dose rate: 155.5 rads/s.

vargas@computer.org

Combined tests:

Test Environment

Combined tests:

TID (Co⁶⁰) and Radiated-EM Immunity

Comparison between the fault detection capability of the WD against the RTOS native fault detection mechanisms for fresh and aged FPGAs operating in an EMI-exposed environment

Combined tests:

TID (Co⁶⁰) and Radiated-EM Immunity

Frequencies at which it was observed system failure during EM-immunity test (Fixed EM Field: 80 v/m) for 160krads and 340krads deposited on FPGAs

	Frequencies or [frequency ranges] at which the system failed				
	(MHz)				
	1st Experiment	2nd Experiment			
	(Initial dose: 160 krad)	(Fully aged with 340 krad)			
	67.39	[68.07 - 93.59]			
	68.07	[276.85 - 299.79]			
	68.75	[311.86]			
	79.81	[459.87 - 473.81]			
	99.34	[771.52 - 794.90]			
FPGA 1	100.34				
(Lot 1)	166.67				
	168.34				
-	170.02				
	178.69				
	258.22				
	260.81				
	263.41				
	266.05				
	315.08				
	999.32				

71

Combined tests:

TID with Co⁶⁰ and Radiated-EM Immunity

Electromagnetic immunity for the Xilinx Virtex4 (XC4VFX12-10SF363). Results for FPGA 1 (*Lot 1*) fully aged with 340 krad of Co^{60} . Immunity test = IEC 62.132-2 TEM-Cell Test Method, on July 2013.

72
Combined Tests: Conducted EMI with TID and SEU

Goal:

SEU sensitivity w.r.t. imprint effect, V_{DD} disruption and TID in a Xilinx/Spartan3 FPGA (CMOS 90nm) (XC3S500E-4PQ208)

TID (X-Ray, AmBe)

(<u>Configuration Bitstream</u>) Cross Section as function of Power Supply (V_{DD}) Disturbance (**Fresh FPGA**)

Imprint Effect:

When a memory element remains for a long period storing **the same logical level** ("0" or "1") while being irradiated for high dose rates, it **tends to maintain this value during the rest of its lifetime** (similar to the "**stuck-at fault**" **Model** widely used by industry).

We have deposited **750 krad** and **950 krad** on two **Xilinx/Spartan3** FPGAs storing the pattern "all 0's" in the BRAMs ("hard" pattern) (same fabrication lot)

vargas@computer.org

$(\underline{BRAM}) \ Cross \ Section \ as \ function \ of \ Power \ Supply \ (V_{DD}) \ Disturbance \ (Irradiated \ FPGA \ with \ 750 \ krad)$

(<u>BRAM vs. Config</u>) Cross Section as function of Power Supply (V_{DD}) Disturbance (**Irradiated FPGA with 950 krad,** ²⁸Si)

BRAM Reliability per Bit

Power Supply (V_{DD}): 0.85 volts SEU Results for Fast Neutrons (²⁴¹AmBe), [2 – 11] MeV (**Fresh x Irradiated FPGA with 750 krad, ²⁸Si**)

Mainly induced by the "soft" pattern

Conclusions

Ref: DATE 2010, Lin Huang et. al.

Events addressing the presented topics ...

17th IEEE Latin-American Test Symposium Foz do Iguaçu, Brazil, 6th - 8th April 2016 TTEP Day 9th April 2016

General Chairs:

Leticia Bolzani Poehls – PUCRS, Brazil leticia@poehls.com

Yervant Zorian – SYNOPSYS, USA yervant.zorian@synopsys.com

Past General Chair: Victor Champac – INAOE, Mexico

Honorary Chair: Fabian Vargas – PUCRS, Brazil

Local Chair: Andre Mariano - UFPR, Brazil

Program Chairs: Matteo Sonza Reorda – Politecnico di Torino, Italy Tiago Balen – UFRGS, Brazil

Special Session Chair: Vishwani Agrawal – Auburn University, USA

Panel Chairs:

Raoul Velazco – TIMA Laboratories, France Fernanda Kastensmidt – UFRGS, Brazil

CALL FOR PAPERS

The IEEE Latin-American Test Symposium (LATS, previously Latin-American Test Workshop - LATW) is a recongnized forum for test and fault tolerance professionals and technologists from all over the world, in particular from Latin America, to present and discuss various aspects of system, board, and component testing and fault-tolerance with design, manufacturing and field considerations in mind. Presented papers are also published in the IEEE Xplore Digital Library. The best papers of the 17th LATS will be invited to re-submit to IEEE Design and Test of Computers, IEEE Transactions on Computer-Aided Design, Journal of Electronic Testing: Theory and Applications - JETTA (Springer) and Journal of Low Power Electronics - JOLPE (American Scientific Publishers).

Topics of interest include but are not limited to:

- Analog Mixed Signal Test
 Automatic Test Generation
 Built-In Self-Test
- Defect-Based Test
- Design and Synthesis for Testability
- Design for Electromagnetic Compatibility
- Design for Reliable Embedded Software
- Design Verification/Validation

- Economics of Test
- Fault Analysis and Diagnosis
- Fault Modeling and Simulation
- Fault-Tolerance in HW/SW
- Fault-Tolerant Architectures
- Memory Test and Repair
- On-Line Testing
- Process Control and Measurements

- Radiation/EMI
- Hardening Techniques
- Software Fault-Tolerance
- Software On-Line Testing
- System-on-Chip Test
- Test Resource Partitioning
- Yield Optimization
- Hardware Security

2016 APEMC Topical Mini-Symposium on IC EMC

The topical mini-Symposium on IC-EMC is organized as a special track under the 2016 APEMC, which will be held in Shenzhen, China, May 18 to 21, 2016. Prospective authors are invited to submit original papers on their latest research results. Presented papers are also published in the *IEEE Xplore* Digital Library. Topics of interest include, but are not limited to:

Symposium Topics

Design of 2D and 3D system-on-chip (SoC) for EMC
 Hardware-software co-design and integration for IC EMC

- Emission and immunity-aware IC design
- ESD immunity techniques at IC level
- Signal and power integrities at IC level
- · Combined effects of radiation and aging on IC EM sensitivity
- Harsh environment effects on IC EM sensitivity
- IC EMC for avionics and automotive applications
- EMC-aware analog and mixed signal circuits
- RFICs EMC
- IC-level measurement techniques for EMC
- IC-level modeling techniques for EMC
- EMC simulation of integrated circuits
- EMC in Microwave Integrated Circuits
- EMC-aware software solutions
- FPGA-based embedded systems and EMC

General Chair:

Er-Ping Li erpingli@ieee.org

Topical Symposium Chairs:

Sonia Ben Dhia

INSA Euro-Méditerranée, UEMF, Morocco LAAS CNRS, Toulouse, France sonia.bendhia@insa.ueuromed.org

Bernd Deutschmann

Graz University of Technology, Austria bernd.deutschmann@tugraz.at

Fabian Vargas

Catholic University - PUCRS, Brazil vargas@computer.org

Shih-Yi Yuan Feng Chia University, Taiwan

syyuan@fcu.edu.tw

Scientific Committee:

A. Boyer, LAAS CNRS, France A. Barić, FER, Croatia P. Besse, Freescale, France M. Coenen, EMCMCC bv, Netherlands C. Marot, AIRBUS Group, France F. Fiori, Polito Torino, Italy A. Durier, IRT Toulouse, France M. Ramdani, ESEO, France

Thank you for your attention ...

vargas@computer.org